couvrir le terrain - significado y definición. Qué es couvrir le terrain
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es couvrir le terrain - definición

RADAR CLASS
Ground hugging; Terrain hugging; Terrain following radar; Terrain Following Radar; Terrain-following

GMC Terrain         
  • Natural Gas GMC Terrain at the NGVA Show in Atlanta November, 2013
AMERICAN CROSSOVER SUV PRODUCED BY GMC
GMC Terrain Denali
The GMC Terrain is a crossover SUV by American manufacturer General Motors under its sub-brand GMC. The Terrain was built on GM's Theta platform, like the Chevrolet Equinox.
Height above average terrain         
HEIGHT BASED ON LARGE AREA SURROUNDING OBJECT; OFTEN USED IN U.S. FOR ANTENNA TOWERS
Antenna height above average terrain; HAAT; Height Above Average Terrain; EHAAT; Effective height above average terrain; Height of antenna above average terrain; Effective height of antenna above average terrain; Metres above average terrain
Height above average terrain (HAAT), or (less popularly) effective height above average terrain (EHAAT), is the vertical position of an antenna site is above the surrounding landscape. HAAT is used extensively in FM radio and television, as it is more important than effective radiated power (ERP) in determining the range of broadcasts (VHF and UHF in particular, as they are line of sight transmissions).
LE         
WIKIMEDIA DISAMBIGUATION PAGE
Le; LE (disambiguation); Le (disambiguation); L.e.; Le.; L E; Lê (Brazilian footballer); Lê (footballer)
LAN Emulation (Reference: LANE, ATM)

Wikipedia

Terrain-following radar

Terrain-following radar (TFR) is a military aerospace technology that allows a very-low-flying aircraft to automatically maintain a relatively constant altitude above ground level and therefore make detection by enemy radar more difficult. It is sometimes referred to as ground hugging or terrain hugging flight. The term nap-of-the-earth flight may also apply but is more commonly used in relation to low-flying military helicopters, which typically do not use terrain-following radar.

TFR systems work by scanning a radar beam vertically in front of the aircraft and comparing the range and angle of the radar reflections to a pre-computed ideal manoeuvring curve. By comparing the distance between the terrain and the ideal curve, the system calculates a manoeuvre that will make the aircraft clear the terrain by a pre-selected distance, often on the order of 100 metres (330 ft). Using TFR allows an aircraft to automatically follow terrain at very low levels and high speeds.

Terrain-following radars differ from the similar-sounding terrain avoidance radars; terrain avoidance systems scan horizontally to produce a map-like display that the navigator then uses to plot a route that avoids higher terrain features. The two techniques are often combined in a single radar system, the navigator uses the terrain avoidance mode to choose an ideal route through lower-altitude terrain features like valleys, and then switches to TFR mode which then flies over that route at a minimum altitude.

The concept was initially developed at the Cornell Aeronautical Laboratory in the 1950s. It was first built in production form starting in 1959 by Ferranti for use with the TSR-2 aircraft, flying for the first time in an English Electric Canberra testbed in 1962. While the TSR-2 project was ultimately abandoned, the concept was widely deployed in 1960s and 70s strike aircraft and interdictors, including the General Dynamics F-111, Panavia Tornado and Sukhoi Su-24 "Fencer". The wider introduction of stealth aircraft technologies through the 1990s has led to a reduction in low-altitude flight as a solution to the problem of avoiding anti-aircraft weapons and the technique is no longer common. Most aircraft of this class have since retired although the Su-24 and Tornado remain in use in some numbers.